Verma modules over deformed generalized Heisenberg-Virasoro algebras
نویسندگان
چکیده
Let g(G,λ) denote the deformed generalized Heisenberg-Virasoro algebra related to a complex parameter λ≠−1 and an additive subgroup G of C. For total order on that is compatible with addition, Verma module over defined. In this paper, we completely determine irreducibility these modules.
منابع مشابه
Verma modules over the generalized Heisenberg-Virasoro algebra
For any additive subgroup G of an arbitrary field F of characteristic zero, there corresponds a generalized Heisenberg-Virasoro algebra L[G]. Given a total order of G compatible with its group structure, and any h, hI , c, cI , cLI ∈ F, a Verma module M̃(h, hI , c, cI , cLI) over L[G] is defined. In the this note, the irreducibility of Verma modules M̃(h, hI , c, cI , cLI) is completely determined.
متن کاملHarish-chandra Modules over the Twisted Heisenberg-virasoro Algebra
In this paper, we classify all indecomposable Harish-Chandra modules of the intermediate series over the twisted Heisenberg-Virasoro algebra. Meanwhile, some bosonic modules are also studied.
متن کاملThe Generalized Heisenberg - Virasoro algebra ∗
In this paper, we mainly study the generalized Heisenberg-Virasoro algebra. Some structural properties of the Lie algebra are obtained.
متن کاملPathspace Decompositions for the Virasoro Algerba and Its Verma Modules
Starting from a detailed analysis of the structure of pathspaces of the A-fusion graphs and the corresponding irreducible Virasoro algebra quotients V (c, h) for the (2, q odd) models, we introduce the notion of an admissible pathspace representation. The pathspaces PA over the A-Graphs are isomorphic to the pathspaces over Coxeter A-graphs that appear in FB models. We give explicit constructio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2021
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2021.106723